Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Moving Average Calculator Angesichts einer Liste von sequentiellen Daten können Sie den n - point gleitenden Durchschnitt (oder den gleitenden Durchschnitt) konstruieren, indem man den Durchschnitt jedes Satzes von n ermittelt Aufeinanderfolgenden Punkten. Wenn Sie beispielsweise den geordneten Datensatz 10, 11, 11, 15, 13, 14, 12, 10, 11 haben, wird der 4-Punkt-Verschiebungsdurchschnitt 11,75, 12,5, 13,25, 13,5, 12,25, 11,75, Bewegungsdurchschnitte verwendet Um sequentielle Daten zu glätten, bilden sie scharfe Spitzen und Dips, die weniger ausgeprägt sind, da jeder Rohdatenpunkt nur ein Bruchteilgewicht im gleitenden Durchschnitt gegeben wird. Je größer der Wert von n ist. Desto glatter ist der Graph des gleitenden Mittelwertes im Vergleich zum Graphen der ursprünglichen Daten. Aktienanalysten betrachten häufig bewegte Durchschnitte der Aktienpreisdaten, um Trends vorherzusagen und Muster besser zu sehen. Sie können den folgenden Taschenrechner verwenden, um einen gleitenden Durchschnitt eines Datensatzes zu finden. Anzahl der Begriffe in einem einfachen n-Punkt gleitenden Durchschnitt Wenn die Anzahl der Begriffe in der ursprünglichen Menge d ist und die Anzahl der in jedem Durchschnitt verwendeten Begriffe n ist. Dann wird die Anzahl der Begriffe in der gleitenden Durchschnittssequenz sein. Wenn Sie beispielsweise eine Sequenz von 90 Aktienkursen haben und den 14-tägigen Rollendurchschnitt der Kurse einnehmen, wird die rollende durchschnittliche Sequenz 90-14-177 Punkte haben. Dieser Rechner berechnet Bewegungsdurchschnitte, bei denen alle Begriffe gleich gewichtet werden. Sie können auch gewichtete gleitende Durchschnitte erstellen, in denen einige Begriffe stärker gewichtet werden als andere. Zum Beispiel geben mehr Gewicht zu jüngeren Daten, oder die Schaffung eines zentral gewichteten Mittelwert, wo die mittleren Begriffe werden mehr gezählt. Siehe die gewichteten gleitenden Durchschnitte Artikel und Taschenrechner für weitere Informationen. Zusammen mit bewegenden arithmetischen Mitteln betrachten einige Analytiker auch den bewegten Median der geordneten Daten, da der Median nicht von seltsamen Ausreißern betroffen ist. Frequenzantwort des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, Der Impuls Antwort des L-Sample-Gleitendurchschnitts ist Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe Wir können die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen werden nur um einen Faktor von etwa 110 (für den 16-Punkte-gleitenden Durchschnitt) oder 13 (für den vier-Punkte-gleitenden Durchschnitt) gedämpft. Wir können viel besser als das. (1-exp (-iomega)) H8 (18) (1-exp (- & omega; & sub4; (1-exp (-iomega)) (1-exp (-iomega)) (1-exp (& ndash; H16)) Achse (0, pi, 0, 1) Copyright - 2000 - Universität von Kalifornien, Berkeley
No comments:
Post a Comment